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Abstract 

Nowadays, the need for more mobility and to be able to share or exchange information at any time, using 

mobile devices (cell phones, laptops) encouraged the researchers To continue developing mobile phone 

networks. But the problems in the communication system made that really hard, the most serious problem 

is the loss of information in the links between the transmitter and the receiver. Many models have been 

made to predict coverage using so-called propagation models. But the models characterizing the losses 

are semi-empirical models incapable of giving satisfying results in all cases. The purpose of this paper is 

to propose an applicable model to predict the path loss in mobile networks based on artificial intelligence 

techniques. Our experiments showed an encouraging prediction results in rural and suburban 

environments. 

Keywords Mobile Networks, Predictive Models, Artificial Neural Networks. 

1. Introduction 

Propagation models are used when designing a radio interface to optimize performance and also when 

deploying systems in the field to determine radio coverage. The models will be implemented in 

engineering tools to predict different quantities useful for the deployment of radio telecommunications 

systems as well as for the study of radio coverage (choice of sites, allocation of frequencies, definition of 

powers) and the definition of interference. The outdoor models are very dependent on geographic 

databases comprising elements relating to topography and types of land use. This is because the way in 

which ultra high frequency (UHF) radio waves will propagate in a given space is intimately linked to the 
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obstacles (buildings, tree trunks, mountain sides, etc.) encountered along the propagation channel. 

Therefore, the modeling of geographic objects is essential in any UHF wave propagation model [1]. But 

in the indoor propagation models the data bases of the propagation environment have to be very 

determined. Signals may propagate through a window across the street. They may or may not propagate 

through the corner inside a building and other architectural standards. So it is really hard to make an 

accurate model. 

Propagation models are used when designing a radio interface to optimize performance and also 

when deploying systems in the field to determine radio coverage. The models will be implemented in 

engineering tools to predict different quantities useful for the deployment of radio telecommunications 

systems as well as for the study of radio coverage (choice of sites, allocation of frequencies, definition of 

powers) and the definition of interference. The models are very dependent on geographic databases 

comprising elements relating to topography and types of land use. This is because the way in which UHF 

radio waves will propagate in a given space is intimately linked to the obstacles (buildings, tree trunks, 

mountain sides, etc.) encountered along the propagation channel. Therefore, the modeling of geographic 

objects is essential in any UHF wave propagation model [2]. 

The rest of this paper is organized as follows. In Section two some propagation models that are 

frequently used in path loss prediction are presented. Related works are summarized in Section three. In 

section four, the neural network architectures such as MLP and the adopted neural network architecture 

are showed with details of database processing. We present our loss prediction results based on network 

training in Section six. Section seven is the conclusion. 

2. Classification of Propagations Models 

In the field of mobile radio communications, there are two basic approaches to predicting the behavior of 

a transmission channel. The first approach is to model the channel statistically. The second method 

consists in using a direct analytical resolution of the propagation equations or in simulating the signal 

paths in the propagation medium. 

The type of model chosen will depend on the level of estimation desired: rough or precise 

estimation. In addition, available field data plays an important role. After the prediction estimate, field 

measurements must be performed in order to validate the model. This step usually requires readjustment 

of the parameters. 

The two main types of models resulting from these approaches are theoretical models, based on 

theoretical models, and empirical models. Semi-empirical models using the previous approaches are also 
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defined. They take into account the theoretical propagation equations and are parameterized using the 

results of real measurements. 

Deterministic models give much more precise results but require a significant amount of 

information about the area where they will be applied. In addition, they require a long computation time. 

They are generally reserved for particular places where other models cannot be used. They are based on 

geometric optics calculations (reflection, diffraction, etc.). This method is called the ray method. 

A number of path loss propagation models have been developed in the past and are being published 

to predict coverage [3]. These models cannot be considered generalized because the environment 

developed is different from the one in which they were applied. This means that the physical structure, 

topology and weather conditions in the deployment area vary. The attenuation due to the environment can 

be distinguished by a pattern of loss of the terrain path. The average path loss for an arbitrary 

transmitter/receiver separation is given as a function of distance by [3]: 

L୮(dB) = L୮(d଴) + 10nLogଵ଴(
ୢ౟

ୢబ
) (1) 

 𝑛: path loss exponent 

 𝑑௜: measured distance 

 𝑑଴: reference distance 

 𝐿௣(𝑑଴): path loss at reference distance 

In general, whether empirical or semi-empirical, are useful for giving orders of magnitude but their 

lack of precision often makes them unsuitable for the implementation of satisfactory engineering. 

Moreover, the establishment of such models is done from a grid of parameters, it will be difficult to 

extend it to a new range of use, since we do not have the reference of the laws of electromagnetism to 

assess the change this can make on precision results. In addition, the comparison of the results provided 

by these models with reality made it possible to conclude that this category of models, although it 

undergoes a calibration and refinement operation, has precision defects, especially in places with a high 

density of buildings.  

3. Related Works 

3.1. New empirical path loss model for wireless sensor networks in mango Greenhouses 

(NEPL):  

This experiment has done in mango greenhouse in the north of Malaysia to create a new model for 

wireless sensor networks (WSNS). It based on the empirical models (COST35,ITUR) to create the new 

model with considering the factors that effected at signal propagation like diffraction ,reflection, and 
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scattering, without forgetting the factor of distance between the transmitter and the receiver and the factor 

of foliage [5].  

3.2. Semi Deterministic Hybrid model for Path Loss prediction improvement (SDH) 

This experience to create hybrid model for path loss prediction from merged the models (empirical model 

(cost hata231), semi empirical (Walfish_Ikegami)) with statistical processing of the empirical 

measurement in GSM mobile network with 900 MHZ as a frequency in city of southern India[6]. 

3.3. LTE Maritime Coverage Solution and Ocean Propagation Loss Model 

The experiment has done in the East Sea of South Korean using two base-station sites, one can provide a 

service coverage of 0~100 km with the antenna height of 350 meter above the sea level and the other can 

provide a service coverage of 80~180 km with the antenna height of 1,585 meter and a pair of antennas of 

6 dBi gain were set up on top position of a ship, and connected to an LTE maritime router. From the 

obtaining results the feasibility of an LTE maritime system has approved with coverage ranging up to 180 

km with multi-cell configuration. Three propagation models have tested with the obtained data. Free 

space path loss (FSPL) model defines how much strength of the radio signal is lost during propagation 

from transmitter to receiver in free space environment used the frequencies and the distances as a 

parameters. Long Range Ocean Radio Propagation model it use the distance, antenna heights and 

frequency as a parameters. Finally Three-Slope Propagation Model for Ocean Environment (proposed 

model) after Implementing the results they realized that the curves of propagation loss can be modeled as 

a three-slope characteristic. After the comparison between the three models the proposed model is well 

matched for base-station transmit antenna height higher than 300 meter. can be useful and effective in cell 

design for ocean coverage, considering the fact that LTE maritime systems require long ocean coverage 

and the transmit antenna height of 350 meter can achieve the propagation loss of 160 dB at 100 km, 

which is the maximum coverage typical LTE can have [7]. 

3.4. Stanford University Interim (SUI) Model 

IEEE 802.16 Broadband Wireless Access working group proposed the standards for the frequency band 

below 11 GHz containing the channel model developed by Stanford University, namely the SUI models 

[8][9]. This prediction model comes from the extension of Hata model with frequency larger than 1900 

MHz. The correction parameters are allowed to extend this 29 model up to 3.5 GHz band. In the USA, 

this model is defined for the Multipoint Microwave Distribution System (MMDS) for the frequency band 

from 2.5 GHz to 2.7 GHz [8]. 

  



Neural network-based path loss model for cellular mobile networks at 800 to 1800 MHz bands  

ARSTD Journal  57 

3.5. Comparison 

Next table summarizes the characteristics of the previous models: 

Table 1 Comparison between models 

Models Type Frequency 
band 

H eight of 
base station 
antenna 
 

Height of 
mobile 
station 
antenna 

Distance The propagation type  

Okumara-hata 
[1] 

Empirical 150MHZ-
1.5GHZ 

30m-200m 1m-10m 1km-20km  Urban 
 Suburban 
 Rural  

Egli [2] Empirical 90-1000MHz 30m-200m 1m-10m 1km-20km  Urban 
 Rural  

COST 231-
Hata [13]  

Empirical 1800MHz 38m 1.5m  50m-1km  Urban 
 Suburban 

Walfisch-
Ikegami [4] 

Semi 
Empirical 

800-2000 
MHZ 

4m-50m 1m-3m 20m-5km  Urban 

ECC-3 [14]  
 

Empirical 150MHZ-
3.5GHZ 

30m-200m 1m-10m 1km-20km  Urban 
 Suburban 

SUI [8]. 
 
 
 

Semi 
Empirical 
 

2.5-2.7 GHZ 
 
 

10m-80m 
 
 
 

2m-10m 0.1km-8km  Urban 
 Suburban 
 Rural  
 

NEP [5]. Empirical 2.45GHZ 5m 0.5-3.5m 50 m as a 
length, 10 m 
as a width, 
and 5 m as a 
height 

 Indoor model 

SDH [6]. Semi 
Empirical 

800-200MHZ 10 m 1.5m 3km  Urban 

4. ARTIFICIAL NEURAL NETWORKS 

From the hypothesis that intelligent behavior emerges from the structure and behavior of the basic 

elements of the brain that artificial neural networks have developed. The interest of neurons lies in the 

properties that result from their associations in networks. A network of artificial neurons, is a set of 

formal neurons (of simple computing units, of processor nodes) associated in layers (or subgroups) and 

operating in parallel [10]. 
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Fig. 1 Mcculloch's formal neuron model. 

4.1. MLP network 

A back-propagation network is a multi-layered MLP network consisting of at least one input layer, one 

hidden layer and one output layer (Fig. 2). Each layer contains one or more neurons that depends on the 

number of data that we want to teach the network, and number of output we want. There is no precise 

method for determining the number of layers and neurons, it depends on the complicity of the problem to 

be solved [10]. 

 

Fig. 2 Architecture of an MLP network 

4.2. OUR ARCHITECTURE 

Our goal is the design of an MLP type neural model for which planning and densification of a GSM 

network can be done. 

The main step is the collection of an experimental database that contains the following parameters: 

Base Station Height (Hb), Mobile Antenna Height (Hm), Frequency, Distance and the loss recorded at 

each measurement point. 

  

 

Fig. 3 Our neural network architecture 
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4.3. Formatting the database 

Databases must pass through a preprocessing phase in order to be adapted to neural inputs and to make 

neural network training more efficient [11]. A common pretreatment is to eliminate artificial 

discontinuities in the input function space and to bring the problem entries back to an appropriate set of 

information [12]. Then an appropriate standardization must be made, taking into account the range of 

values accepted by the network. 

 

Fig. 4 Preprocessing phase of the database 

4.4. Architecture optimization 

After learning, it is necessary to test the neural network on a different database that has been used for 

learning. This test is to assess the performance of the network with nearly unseen data. If the performance 

is not satisfactory, the architecture of the network will change to enhance it. We choose an initial 

architecture to be used in learning and testing. If the performance is achieved, then the settings are saved, 

otherwise we change the architecture and we start over. 

Input Data 

Pre-processing 

Neural Network 
Training  

Output Data 
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Fig. 5 Optimization of the neural network architecture 

5. RESULTS AND INTERPRETATIONS 

5.1. Architecture Optimization (Suburban Environment) 

In order to validate the predictive property of the optimized network structure, the test and training sets 

were compared to the response of the neural model. Figures 6 and 7, show that in both cases, a very good 

agreement between the experimental results and the expected results (ANS) was obtained. Therefore, the 

optimized structure can be used to predict other combinations of the input variables. 

In the following, we will interpret the performance of the optimized MLP network by comparing 

our results with the actual measurements. 
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.  

Fig. 6 Validation of our neural model for the learning set (Suburban Environment) 

 

Fig. 7 Validation of our neural model for the test set (Suburban Environment) 

Figure 8 shows a comparison between results predicted by the neuronal model (RNA) for different 

distances d(m) and with those measured in the case of a suburban environment. 
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Fig. 8 Comparison of measured results and MLP (Suburban Environment) 

As shown in Figure 8, a total harmony can be observed for the entire simulation range. This last 

observation shows the applicability of artificial neural networks to the study of losses in the GSM 

network. 

5.2. FINAL MODEL (SUBURBAN ENVIRONMENT) 

After having modeled the MLP network and made the necessary optimizations, we were able to choose 

the best structure which is shown in Table 2. 

Table 2 MLP training parameters (suburban environment) 

Architecture Feed - Forward MLP 
Hidden layer 2 
Learning algorithm Back propagation of errors 

  
Number of neurons 

Input layer 4 
1st hidden layer 15 
2nd hidden layer 10 
Output layer 1 

Transfer function 

Input layer Log-sigmoid 
1st hidden layer Log-sigmoid 
2nd hidden layer Log-sigmoid 
Output layer Linear 

Definition of inputs 
  fr (MHz) Hb (m) Hs (m) D (km) 

Max 1800 35 2 2.3 
Min 957.4 18 1 0.01 

Threshold < 4 × 10-4 

Database 
Learning 88 
Test 64 
Validation 44 
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5.3. Optimization of architecture (Rural environment) 

The correlation between the two outputs (desired and those obtained by the network) use for the test set 

and the learning set. The latter will be highlighted from figures 9 and 10 clearly represent that the two 

results (outputs) are almost identical for the test set and for the set of learning. 

 

Fig. 9 Validation of our neural model for the learning set (Rural environment) 
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Fig. 10 Validation of our neural model for the test set(Rural environment). 

 

Fig. 11 Comparison of measured results and MLP (Rural Environment) 
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Figure 11 presents the comparison between the results predicted by the neuronal model (RNA) for 

different distances d(m) with those measured in the case of a rural environment. It shows an agreement 

between them that can be observed for the entire simulation range. 

5.4. Final model (Rural environment) 

After having modeled the MLP network and made the necessary optimizations, we were able to choose 

the best structure which is shown in Table.2. 

Subsequently we will compare the results found by this model with other empirical models. 

Table 3 MLP training parameters (rural environment) 

Architecture Feed - Forward MLP 
Hidden layer 2 
Learning algorithm Back propagation of errors 

  
Number of neurons 

Input layer 4 
1st hidden layer 15 
2nd hidden layer 10 
Output layer 1 

Transfer function 

Input layer Log-sigmoid 
1st hidden layer Log-sigmoid 
2nd hidden layer Log-sigmoid 
Output layer linear 

Definition of inputs 
  fr (mhz) Hb (m) Hs (m) D (km) 
Max 1800 21 2 2.3 
Min 957.4 20 1 0.01 

Threshold < 4 × 10-4 

Database 
Learning 84 
Test 61 
Validation 41 

5.5. Comparison of results obtained by our model and two empirical models:  

We will present the results obtained for 2 different suburban and rural environments, two different Hb, the 

results obtained by the empirical model cost-231hata and the empirical model Okumura without 

forgetting the type of environment will be compared with those obtained by the MLP .the results are 

shown in figures 12 and 13 for Hb = 35m, Hb = 18m respectively. 
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Fig. 12 Evolution of pathloss as a function of distance for: Hb = 35m. 

 

Fig. 13 Evolution of Pathloss as a function of distance for: Hb = 18m 

The results shown in figures 14 and 15 for hb = 21m, hb = 20m respectively. 
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Fig. 14 Evolution of Pathloss as a function of distance for: Hb = 21m. 

 

Fig. 15 Evolution of Pathloss as a function of distance for: Hb = 20m. 

From Figures 12 and 13 the results clearly show that the measured path loss is less than that 

predicted by a difference varying from 4 to 20 dB. However, there are several reasons that can cause these 
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significant differences. First of all, in Japan, there are few domains nearly satisfying the conditions of 

open space; and where appropriate, they are narrow. Due to this reason Okumura chose the value of urban 

(suburban) area as the standard for the open area. In addition, the geographic location of Japan is different 

from that of Algeria due to geographic differences. Figures 14 and 15 show that for a rural setting, the 

Okumura model has a better estimate of the loss than the COST231 model. 

6. CONCLUSION 

In this paper, we are interested in deterministic, empirical and semi-empirical propagation prediction 

models. We have shown that these propagation models are only mathematical formulas obtained from 

statistics on a very large number of measurements. These models allow rapid calculations and do not take 

into account the topology of the terrain such as flat or harsh terrain. The lack of precision of these models 

directs us to another solution: the use of artificial intelligent networks. We aimed to predict the loss of the 

GSM network signal path. There are many methods of prediction based on deterministic processes thanks 

to the availability of improved data values, but the Okumura-Hata model is the most commonly used. 

However, prediction models differ in their applicability to different environmental and field conditions. 

Therefore, further improvement of the propagation models in the open area has been suggested. This 

improvement was achieved by using artificial neural networks between measured and predicted loss 

values to provide sufficient MSE for prediction. The use of neural networks in the modeling process 

enables our model to obtain the accuracy and speed of the calculation. Furthermore, if multiple datasets is 

used for training, the neural model gives more robust results, better prediction results could be achieved. 
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